Vienna, Austria
Modeling and Analysis of Complex Systems and Processes
MACSPro'2019
March 21-23, 2019

MACSPro'2019 conference is intended to bring together people working on theory and practice of analysis of complex systems in different domains and industries with the goal to encourage technology transfer from cutting edge research to business critical and safety critical systems.

TOPICS OF THE CONFERENCE

The topics include, but are not limited to:

  • Big data analytics
  • Business processes modeling and analysis
  • Distributed ledger technologies and blockchain
  • Fuzzy Multi-Criteria Decision Making
  • Machine learning algorithms and applications
  • Multi-agent systems
  • Process mining
  • Software testing and verification
  • Simulation modeling
  • Visual analysis of complex structures
One can choose between two types of submissions: full papers (up to 12 pages PDF in Springer LNCS style), or short papers (max 6 pages) for posters or demo session.
Please use the EasyChair system to submit a paper: https://easychair.org/conferences/?conf=macspro2019.
The proceedings of the conference will be submitted for publication to CEUR Workshop Proceedings service, CEUR-WS.org.
INVITED TALKS

Prof. Dr. Jan Mendling
How to Research Methods for Process Analysis and Design

Prof. Dr. Gia Sirbiladze
New Fuzzy Technologies of Weakly Structured Processes' Modeling and Simulation

Dr. Fedor Krasnov
Data Science Applications in Oil and Gas Industry

Prof. Nikos G. Bardis
Remote Identification and Authentication for High Security Access in Multi User Systems

More info

Prof. Jose A. Lozano
Time Series Data Mining Challenges

More info

Prof. Paolo Rosso
Modeling and Profiling Users in Social Media

More info

IMPORTANT DATES

Application deadline: 15 January 2019 Deadline extension: 30 January 2019
on EasyChair

Conference dates: 21-23 March 2019 in Vienna (Austria)

PROGRAM COMMITTEE
ORGANIZING COMMITTEE
  • Oleg Lavrov
  • Anna-Maria Lukina
  • Rostislav Yavorskiy
  • Natia Sirbiladze

Jose A. Lozano,
Scientific Director, Basque Centre for Applied Mathematics (BCAM)
Professor, University of the Basque Conuntry UPV/EHU

Bio
Jose A. Lozano received his M.Sc. degree in mathematics and PhD in computer science from the University of the Basque Country UPV/EHU, in Spain, in 1992 and 1998 respectively. He has been a full professor at the University of the Basque since 2008 where he leads the Intelligent Systems Group. Since January 2018 he is the scientific director of the Basque Center for Applied Mathematics (Spain). Dr. Lozano has authored more than 110 ISI journal papers, some of them have become highly cited papers. His current research interests include machine learning and its synergies with optimization in general and supervised classification, time series analysis and Bayesian inference in particular. Dr. Lozano has served on the organizing and program committee of over 60 international conferences being the general chair of IEEE Congress on Evolutionary Computation 2017. He also serves as Associate Editor of top journals such as IEEE Trans. on Evolutionary Computation, Evolutionary Computation and IEEE Trans. on Neural Network and Learning Systems, to name but a few.

Topic: Time Series Data Mining Challenges

Description
Time series have gained much interest in the last decade. They appear naturally in industrial, medical or economical environments to name a few. Time series mining refers to the activities related with the extraction of knowledge from time series databases. Particularly, typical machine learning activities such as supervised classification or clustering are carried out from this kind of data. Furthermore, the timely nature of the data allows considering new problems. An example is the early classification of time series, where the objective is to classify the series as early as possible a before its end. In this talk we will review time series mining algorithms and pointed out to new avenues to do research in the area.

Prof. Nikos G. Bardis,PhD, Computer Engineering and Informatics

Bio
NIKOS G. BARDIS received the diploma of Computer Engineering and the PhD degree from National Technical University of Ukraine (Polytechnic Institute of Kiev) in 1995 and 1999 respectively. He is currently an Associate Professor at the Department of Mathematics and Engineering Sciences of the Hellenic Army Academy. Collaborates at the University of Athens - Department of Mathematics and entered the postgraduate course of Cryptography and Security of Information Systems. His research interests include cryptography and data security, information theory, coding theory, systems engineering and applications in defence. He has published in over 50 peer-reviewed journals and conferences. He is a member of Technical Program Committee (TPC) of the IEEE Communication Society (COMSOC), IEEE Computer Society Technical Committee on Computer Communications (TCCC), Technical Council on Software Engineering (TCSE) and IEEE Information Theory Society.

Topic: Remote Identification and Authentication for High Security Access in Multi User Systems

Description
Information Society applications, such as e-Government, e-Banking, e-Commerce increasingly demand high security for remote user interaction. Processing platforms concerned include cloud computing resources, Internet of Things applications, smart card systems and other remote access paradigms. One of the fundamental security issues arising in such platforms is remote user identification and authentication. More specifically, this presentation is concerned with the problem of the implementation of high complexity identification and authentication processes in devices with restricted computational resources. The traditional approaches are based in asymmetric algorithms, such as the RSA, that demand significant computational effort which essentially prohibits their use. In this lecture innovative methodologies are presented that deal with this problem. A variety of methods are presented that aim to facilitate the design and implementation of high security user identification and authentication principles in multiuser systems. Security is achieved using proposed technical primitives that provide security in different contexts. The primitives include modified asymmetric algorithms, elliptic curves and innovative methodologies based on Boolean transformations.

Keywords: Galois Field, Modular exponentiation, modular multiplication, exponentiation cloud computing, zero-knowledge identification, cryptography, data security.

Paolo Rosso, Full Professor (Profesor Catedrático), Universitat Politècnica de València, Spain

Bio
Paolo Rosso is full professor at the Universitat Politècnica de València, Spain where he is also a member of the PRHLT research center. His research interests are focused on social media data analysis, mainly on author profiling, irony detection, opinion spam detection, and social copying. Since 2009 he has been involved in the organisation of PAN benchmark activities at CLEF, where he is also deputy steering committee chair for the conference, and at FIRE evaluation forum, mainly on plagiarism / text reuse detection and author profiling. At SemEval he has been co-organiser of shared tasks on sentiment analysis of figurative language in Twitter (2015), and on multilingual detection of hate speech against immigrants and women in Twitter (2019). He has been PI of several national and international research projects funded by EC, U.S. Army Research Office, and recently Qatar National Research Fund. He is associate editor of Information Processing & Management, and co-author of several papers in international journals and conferences.

Topic: Modeling and Profiling Users in Social Media

Description
In the keynote we will address the importance of inferring demographic information from social media for marketing and security reasons. The aim is to model how language is shared among users of a certan demographic group. We will see how a shallow discourse analysis can be done on the basis of a graph-based representation. We will present some experiments for identifying gender and age, both in English and in Spanish social media data, and we will compare with state-of-the-art systems. Last, we will also address the importance of profiling whether the author of a Twitter feed, for instance, is a bot or a human. This problem will be investigated in the framework of the auhor profiling shared task at PAN 2019: https://pan.webis.de/clef19/pan19-web/author-profiling.html